0

Suppose I have a set of feature columns that I select to check for correlations with the target feature 'is_Star'; which is of binary values and the former consists of numeric values

Why do i end up getting an array of NAN values? Also, I have accounted for missing values, if any.

from sklearn.feature_selection import f_classif

X = star_data.drop(['class', 'is_Star'], axis=1)

y = star_data['is_Star']

anova = f_classif(X, y)

anova

The output given is as below

(array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]),

 array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]))
meKafka
  • 1
  • 1

0 Answers0