import numpy as np
from scipy.stats import norm
Generate some random data
np.random.seed(42)
data = np.random.normal(0, 1, size=100)
Define prior distribution
prior_mean = 0
prior_std = 1
Define variational posterior distribution
posterior_mean = 0
posterior_std = 1
Perform variational inference
for _ in range(1000): # Number of iterations for optimization
# Update mean and standard deviation of the variational posterior
posterior_mean = np.mean(data) / (1 + 1 / prior_std2)
posterior_std = np.sqrt(1 / (1 / prior_std2 + len(data) / posterior_std**2))
Calculate variational posterior probabilities
x_values = np.linspace(-5, 5, num=100)
posterior_probs = norm.pdf(x_values, loc=posterior_mean, scale=posterior_std)
Print mean and standard deviation of variational posterior
print("Variational Posterior Mean:", posterior_mean)
print("Variational Posterior Standard Deviation:", posterior_std)