I'm following this tutorial to try Machine Learning AutoML Forecasting.
In the several parameters we can submit to the AutoML experiment, we have these ones:
- target_logs;
- target_rolling_window_size;
Can you explain with an example how the several forecasting algorithms works when these two parameters are set?
Thank you
automl_advanced_settings = { 'time_column_name': time_column_name, 'max_horizon': max_horizon, 'target_lags': 12, 'target_rolling_window_size': 4, } automl_config = AutoMLConfig(task='forecasting', primary_metric='normalized_root_mean_squared_error', experiment_timeout_hours=0.3, training_data=train, label_column_name=target_column_name, compute_target=compute_target, enable_early_stopping = True, n_cross_validations=3, verbosity=logging.INFO, **automl_advanced_settings)