I am trying to find answers to the following questions. Can someone please help. This is a Hidden Markov Model with 7 states and 4 observations. I have worked out the following solution but still need help with parts ii & iii.
Solution:
I. GATTAG = 1* 1 * 0.5 * 0.25 * 0.2 * 0.5 * 0.4 * 0.15 * 0.6 * 0.25 * 1 * 0.5 * 1 =0.00005625
II. GTAAG
possible paths: B -> S1-> S2 -> S4 -> S5 -> S7-> E
=>1 * 1 * 0.5 * 0.5 * 0.4 * 0.4 * 0.6 * 0.25 * 1 * 0.5 * 1 =
B -> S1-> S2 -> S4 -> S6 -> S7-> E
=> 1* 1 * 0.5 * 0.5 * 0.4 * 04 * 0.4 * 0 * 0.7 * 0.5 * 1 = 0
B -> S1-> S3-> S4 -> S6 -> S7-> E
=> 0
B -> S1-> S3-> S4 -> S5 -> S7-> E
=> 1 * 1 * 0.5 * 0.3 * 0.4 * 0.4 * 0.6 * 0.25 * 1 * 0.5 * 1 =
III. GTACGG
possible paths: B -> S1-> S2-> S3-> S4 -> S6 -> S7-> E
B -> S1-> S2-> S3-> S4 -> S5 -> S7-> E
B -> S1-> S3 -> S2-> S4 -> S6 -> S7-> E
B -> S1-> S3 -> S2-> S4 -> S5 -> S7-> E
B -> S1-> S3 -> S3-> S4 -> S6 -> S7-> E
B -> S1-> S3 -> S3-> S4 -> S5 -> S7-> E
B -> S1-> S3 -> S4 -> S6 -> S6 -> S7-> E
B -> S1-> S2 -> S4 -> S6 -> S6 -> S7-> E
How do I calculate this probability?
