A uniform pipeline, $5km$ in length, $100mm$ in diameter and with a roughness size of $0.03mm$, conveys water between two reservoirs.
The difference in water level between the reservoirs is $50m$.
In addition to the entry loss of $0.5\frac{v^2}{2g}$, a valve produces a head loss of $10\frac{v^2}{2g}$.
Determine the steady discharge between the reservoirs.
I know that the first stage should be to find a value for velocity $v$ using the Colebrook-White Formula:$$v=-2\sqrt{2gDs_{f}}log(\frac{k_{s}}{3.7D}+\frac{2.51u}{D\sqrt{2gDs_{f}}})$$
where $v=$ velocity, $g= 9.81$ m/s, $D=0.1$, $s_{f}=0.01$, $k_{s}=0.03$ x $10^{-3}$ and $u=1$ x $10^{-6}$.
Subbing these values in, I get velocity $v=2.312$ m/s (3 d.p.).
Now I assume I need to sum the entry and head losses $h_{l}$ $$h_{l}=0.5\frac{2.312^2}{2\times 9.81}+10\frac{2.312^2}{2\times 9.81}=2.861m$$
Now adjust $h$ to get $h_{f}=50-2.861=47.139$
Then find a new value for $s_{f}=47.139/5000=9.4278\times 10^{-3}$
And finally recalculate for $v$ using the Colebrook-White Formula:$$v=-2\sqrt{2gDs_{f}}log(\frac{k_{s}}{3.7D}+\frac{2.51u}{D\sqrt{2gDs_{f}}})$$
where $v=$ velocity, $g= 9.81$ m/s, $D=0.1$, $s_{f}=9.4278\times 10^{-3}$, $k_{s}=0.03$ x $10^{-3}$ and $u=1$ x $10^{-6}$.
Subbing these values in, I get velocity $v=2.240$ m/s (3 d.p.).
Now recalculating $$h_{l}=0.5\frac{2.240^2}{2\times 9.81}+10\frac{2.240^2}{2\times 9.81}=2.685m$$
$h_{l}+h_{f}=2.685+47.139=49.82\approx 50m$ which is sufficiently accurate to be acceptable.
Since $Q=vA \implies Q=2.240\times 0.05^{2}\pi=0.01759$ $m^{3}/s$
Have I answered this correctly? Thanks!