I was reading through the ITTC – Recommended Procedures and Guidelines - Practical Guidelines for Ship CFD Applications (https://ittc.info/media/4196/75-03-02-03.pdf) document and this little thing kept me thinking. In page 9 the distance y of the first point from the wall can be computed is said to be computed as $y = \frac { y ^ { + } L } { \operatorname { Re } _ { L } \sqrt { \frac { C _ { f } } { 2 } } }$. And right below $C _ { f } = \frac { 1.328 } { \sqrt { R e _ { L } } }$.
Now let's try to deduce the formula for $y$. \begin{cases} \tau _ { w } = \frac { 1 } { 2 } \rho U _ { e } ^ { 2 } C _ { f } \\ u ^ { * } = \sqrt { \frac { \tau _ { w } } { \rho } } \end{cases} $\Rightarrow u ^ { * } = \sqrt { \frac { \frac { 1 } { 2 } \rho U _ { e } ^ { 2 } C _ { f } } { \rho } } \Rightarrow u ^ { * } = U_e\sqrt{\frac{C_f}{2}}$
$\begin{cases} y ^ { + } = \frac { yu ^ { * } } { \nu } \Rightarrow y=y ^ { + }\frac{\nu}{u^{*}}= y^{+}\frac{\nu}{U_e\sqrt{\frac{C_f}{2}}}\\ Re_L= \frac{U_e L}{\nu} \Rightarrow \frac{Re_L}{L} = \frac{U_e}{\nu} \Rightarrow \frac{\nu}{U_e}=\frac{L}{Re_L} \end{cases}$
$\Rightarrow \boxed{y =\frac{y ^ { + }L}{Re_L\sqrt{\frac{C_f}{2}}} }$
So in the deduction $C_f$ is the local friction coefficient, but in the guidelines, $C_f$ is obtained using a formula for an average friction coefficient. So in my opinion $C _ { f }$ should be calculated by $\frac { 0.6642 } { \sqrt { Re _ { x } } }$.
What do you think?