Calculate the area of the triangular tract of land and its most
-
Welcome to Engineering! This looks like a [homework question](http://meta.engineering.stackexchange.com/q/121/1832). In order for such questions to be answered in this site, we need you to add details describing the precise problem you're having. What have you tried to solve this yourself? Please [edit] your question to include this information. – Wasabi Jan 08 '21 at 11:33
2 Answers
I'll add my answer because the question is requesting the probable error. To calculate the area A (essentially the same as kamran's answer but in line with the OP symbols) as:
$$A= \sqrt{k(k-a)(k_a-b)(k-c)}$$
where:
- $k =\frac{a+b+c}{2}$
- a, b,c are respectively 180.21, 275.26, 156.31
This simplifies to: $$\sqrt{(a+b) (a+c) (b+c) (a+b+c)}$$
In order to calculate the error you can use the following relationship:
$$ dA = \frac{\partial A}{\partial a}da+\frac{\partial A}{\partial b}db+\frac{\partial A}{\partial c}dc$$
where:
- $\frac{\partial A}{\partial a}= \frac{(b+c) \left(3 a^2+4 a (b+c)+b^2+3 b c+c^2\right)}{2 \sqrt{(a+b) (a+c) (b+c) (a+b+c)}}$
- $\frac{\partial A}{\partial b}=\frac{(a+c) \left(a^2+4 a b+3 a c+3 b^2+4 b c+c^2\right)}{2 \sqrt{(a+b) (a+c) (b+c) (a+b+c)}}$
- $\frac{\partial A}{\partial c}= \frac{(a+b) \left(a^2+3 a b+4 a c+b^2+4 b c+3 c^2\right)}{2 \sqrt{(a+b) (a+c) (b+c) (a+b+c)}}$
- $da, db, dc$ are respectively $0.05, 0.02, 0.04$
Since you probably want the relative error you'd need to divide by A:
$$\frac{dA }{A} =\frac{1}{A} \left(\frac{\partial A}{\partial a}da+\frac{\partial A}{\partial b}db+\frac{\partial A}{\partial c}dc\right)\Rightarrow$$
$$\frac{dA }{A} =\frac{1}{A}\frac{\partial A}{\partial a}da+\frac{1}{A}\frac{\partial A}{\partial b}db+\frac{1}{A}\frac{\partial A}{\partial c}dc$$
where:
- $\frac{1}{A}\frac{\partial A}{\partial a}=\frac{3 a^2+4 a (b+c)+b^2+3 b c+c^2}{2 (a+b) (a+c) (a+b+c)}$
- $\frac{1}{A}\frac{\partial A}{\partial b}=\frac {a^2 + 4 a b + 3 a c + 3 b^2 + 4 b c + c^2} {2 (a + b) (b + c) (a + b + c)}$
- $\frac{1}{A}\frac{\partial A}{\partial c}=\frac{a^2+3 a b+4 a c+b^2+4 b c+3 c^2}{2 (a+c) (b+c) (a+b+c)}$
A simpler example for the error (for the rectangle case) can be seen here.
- 23,917
- 2
- 30
- 72
Famous ancient mathematician Heron of Alexandria, Greco- Egyptian mathematician has this formula.
Say S1 and S2 and S3 are the sides.
And we call $$ S_a =\frac{S1+S2+S3}{2}, \\ then \ Area= \sqrt{S_a(S_a-S1)(S_a-S2)(S_a-S3)} $$
I let you do the calcs.
- 21,714
- 2
- 18
- 38