TL;DR:
the time required to reach a $p$ percentile of the Terminal velocity
$$ t_p= \sqrt{\frac{2\rho_{sphere}r}{g \cdot C_D \rho_{air}}}arctanh\left(p \right)$$
the distance travelled required to reach a $p$ percentile of the Terminal velocity
$$ x_p= \frac{2\rho_{sphere}r}{C_D \rho_{air}} \log \left(\cosh\left(arctanh\left(p \right)\right )\right ) $$
where:
- p: is the percentile of the terminal velocity (a number between 0 and 1)
- $C_D$: is the drag coefficient (for a sphere is 0.5)
- $\rho_{air}$ is density of the liquid the sphere is passing through (if air then 1.225 kg/m3)
- $\rho_{sphere}$ is the density of the sphere
- $g$: the acceleration of gravity
- $r$: is the radius of the sphere
From this point on the proof of the above equations is presented.
Differential equation
Starting from:
$$m \dfrac{du}{dt} = mg - \frac{C_D}{2} \rho_{air} \cdot A \cdot u^2 $$
And assuming a sphere (Volume = $\frac{4}{3}\pi r^3$, and crosssectional area $A= \pi r^2$, the following differential equation can be written:
$$\dfrac{du}{dt} = g - \frac{C_D}{2} \frac{\rho_{air}}{\rho_{sphere}r} \cdot u^2 $$
where:
- $C_D$: is the drag coefficient (for a sphere is 0.5)
- $\rho_{air}$ is density of the liquid the sphere is passing through (if air then 1.225 kg/m3)
- $A$: cross-sectional area of the hailstone assuming its a sphere $\frac{\pi d^2}{4} =\pi r^2 $
- $V_{t}$: the terminal velocity of the sphere
- $m$: the mass of the sphere (assuming its a sphere the volume is $\frac{4}{3}\pi r^3$, and the density of the sphere is $\rho_{sphere}$)
- $g$: the acceleration of gravity
- v: the velocity of the sphere
Assuming that the sphere starts from rest then
$$u(0) = 0$$
For simplicity I am replacing:
- $a_0 = g$
- $a_1 = \frac{C_D}{2} \frac{\rho_{air}}{\rho_{sphere}r}$
and the D.E. becomes
$$\dfrac{du}{dt} = a_0 - a_1 \cdot u^2 $$
Integration and solution of the DE
This is a separable d.e. therefore:
$$\frac{1}{ a_0 - a_1 \cdot u^2}\dfrac{du}{dt} = 1$$
Integrating both sides, and assuming that in time t, the velocity is u(t)
$$\int_0^{u(t)}\frac{1}{ a_0 - a_1 \cdot u^2} du= \int_0 ^t 1dt$$
Because $a_0>0$ and $a_1>0$:
$$\left[\frac{1}{\sqrt{a_0\cdot a_1}} arctanh\left(\sqrt{\frac{a_1}{a_0}}u \right) \right]_0^{u(t)}= \left[t\right]_0 ^t $$
$$\frac{1}{\sqrt{a_0\cdot a_1}} arctanh\left(\sqrt{\frac{a_1}{a_0}}u(t) \right)= t $$
You can solve for $u(t)$
$$ u(t)= \sqrt{\frac{a_0}{a_1}}\tanh\left(\sqrt{a_0\cdot a_1}t\right) $$
The terminal velocity is :
$$V_t = \sqrt{\frac{a_0}{a_1}} $$
time to reach a percentile of the terminal velocity
The time $t_p$ it takes to reach a percentile $p$ of the terminal velocity can be obtained by :
$$ u(t_p) = a \cdot V_t$$
$$ \sqrt{\frac{a_0}{a_1}}\tanh\left(\sqrt{a_0\cdot a_1}t_p\right)= p \cdot \sqrt{\frac{a_0}{a_1}}$$
$$ \tanh\left(\sqrt{a_0\cdot a_1}t_p\right)= p $$
$$ t_p= \frac{1}{\sqrt{a_0\cdot a_1}}arctanh\left(p \right)$$
distance required to reach a percentile of the terminal velocity
The distance $x_p$ required to reach a percentile $p$ of the terminal velocity can be obtained by:
$$ x_p= \int_0^{t_p} u(t)dt $$
$$ x_p= \int_0^{t_p} \sqrt{\frac{a_0}{a_1}}\tanh\left(\sqrt{a_0\cdot a_1}t\right) dt $$
$$ x_p= \sqrt{\frac{a_0}{a_1}} \int_0^{t_p} \tanh\left(\sqrt{a_0\cdot a_1}t\right) dt $$
$$ x_p= \sqrt{\frac{a_0}{a_1}} \left[\frac{1}{\sqrt{a_0a_1}} \log (\cosh(\sqrt{a_0a_1}t))\right]_0^{t_p} $$
$$ x_p= \frac{1}{a_1} \left[\log (\cosh(\sqrt{a_0a_1}t))\right]_0^{t_p} $$
$$ x_p= \frac{1}{a_1} \left(\log (\cosh(\sqrt{a_0a_1}t_p))-0\right) $$
$$ x_p= \frac{1}{a_1} \log \left(\cosh\left(\sqrt{a_0a_1}t_p\right )\right ) $$
Substituting $t_p$ in:
$$ x_p= \frac{1}{a_1} \log \left(\cosh\left(\sqrt{a_0a_1}\frac{1}{\sqrt{a_0\cdot a_1}}arctanh\left(p \right)\right )\right ) $$
$$ x_p= \frac{1}{a_1} \log \left(\cosh\left(arctanh\left(p \right)\right )\right ) $$